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Improved Wave Drag Predictions Using Modified Linear Theory

Robert T. Stancil*
Vought Corporation, Dallas, Texas

The combined effect of two simple modifications to supersonic linear theory has resulted in significantly
improved local pressure and drag predictions. The two modifications are 1) use of the exact boundary condition,
and 2) use of the local (perturbed) Mach number to calculate $ = VAf2 - 1. Comparisons with exact theory and
test data are shown for two-dimensional ramps, aircraft wings, cones, and other axisymmetric bodies. The
modified linear theory agrees with the exact theory and test data much better than ordinary linear theory,
particularly for the larger slopes and nonslender cases. Also, the modified theory predicts only finite per-
turbation velocities and eliminates the unrealistic peak drags at sonic edge conditions predicted by ordinary
linear theory and slender-body theory. Computational aspects are discussed. Because of the good correlations
obtained for both planar and axisymmetric cases, the method is now being developed for complete aircraft
configuration calculations.

Introduction

THE limitations of supersonic linearized theory in
predicting pressure distributions and drag have been well

cnown for many years. Slender-body theory and area rule are
special cases of linearized theory. The largest discrepancies
3ccur when the sweep angle is nearly equal to the Mach angle
[ c o s ~ l \ / M ) . While linear theory does remarkably well in
Dredicting lift and pitching moment, it does not do as well in
Dredicting drag. Inaccurate prediction results because drag is
:he integral of pressure times slope, and the largest errors in
predicted pressure are likely to occur where the local slopes
are largest. Van Dyke's second-order method gives much
improved accuracy relative to slender-body or linear theory
results for two-dimensional flow, either planar or axisym-
metric, but a method for extending it to three dimensions has
not been found. For aircraft configurations, there has been no
analytical method for predicting drag more accurately than
area rule, short of the very complex "exact" solutions such as
method of characteristics, time-dependent equations of
motion, or relaxation techniques. These exact methods
require large amounts of computer time and are often sen-
sitive to input data smoothness, choice of arbitrary
parameters, etc. In other words, the techniques are not ideal
for application to preliminary design, where many answers
are required quickly. Preliminary design requires a method
which approximates linear theory in complexity and ap-
proaches the exact solutions in accuracy. The modified linear
theory technique described herein provides such a method.

Linear Theory Perturbation Relations
Because line distributions of sources and sinks are

inadequate for a general three-dimensional solution, all
calculations described in this paper utilize surface
distributions of sources and sinks. The velocity potential
equation is

<t>(x,y,z) = H ^(x-x1)2-/32(y-y1)2-/3(z-z])2

(1)
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where Sis the source strength, ds = \/dy2 + dz2 on the surface
of the body, and the integral is taken over that portion of the
surface included in the Mach forecone from the point x,y,z.
Now, under certain nonrestrictive conditions, the per-
turbation velocity components can be derived to be of the
form

V"=<t>" =

-V0S(x,y,z)
0(7-0 tane)

V0S(x,y,z)
7 — 0 tane

l . r . H

+ -(-dx+ J 0d*'

7 P G
T r J 0 X/

(2)

(3)

(4)

where e is the local slope, vn is the perturbation component
perpendicular to the freestream and normal to vp, and vp is
the perturbation component perpendicular to the freestream
and parallel to the local surface. The functions Fy G, and H
are dependent on the value of 0, the limits of integration, the
geometry of the model, and the functions used to describe the
variations of source strength in the.y, z directions.

Modifications to Linear Theory
The accuracy of the current method results from the

combined effects of two modifications: application of the
exact boundary condition, and use of the local (perturbed)
value of 0 = VM2 — 1. An iterative solution is required
because both modifications are dependent on the perturbed
values of local velocities. The exact pressure coefficient
equation is also used.

The exact boundary condition (Fig. 1) requires not only the
use of the perturbed streamwise velocity component but also
the determination of the surface slope (e) in the plane defined
by the freestream velocity vector and the normal to local
surface. This three-dimensional determination of the slope
and the velocity component boundary conditions is necessary
even in quasiplanar cases, such as for wings.

The primary effect of the local & (Fig. 2) is on the constant
of proportionality, 1/0. The 1/0 factor appears in every term
but one on the right side of Eqs. (2-4). Thus, it has a direct
effect on each of the perturbation velocities. As the local
Mach number approaches 1.0, the value of 1/0 approaches
infinity. This is obviously an undesirable result. Therefore, a
correlated local Mach or 0 has been developed based on
calculations for two-dimensional ramps and cones. The
correlation puts a limit on the maximum value of 1/0 and
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LINEARIZED
BOUNDARY CONDITION:

EXACT BOUNDARY CONDITION:
vn = vz cos e + vy sin 0 = VQ (1 + *x/V0) tane

Fig. 1 Modification 1: exact boundary condition.
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Fig. 3 Two-dimensional ramp pressures.

causes the correlated value to approach the limit more slowly
than with the exact equation. The effect of local J3 on the
region of influence (characteristic directions) is less
pronounced, particularly for two-dimensional cases, either
planar or axisymmetric. However, for three-dimensional flow
the variations in propagation direction can be important
because of the lateral or longitudinal displacement of in-
terference effects. Region of influence effects will be
discussed further in the section on computational aspects.

The two modifications have opposite effects. For com-
pressions, the exact tangency condition tends to reduce the
magnitude of the perturbations because (\+<t>x/V-0) is less
than unity, and the required normal velocity vn is less than
with the linearized boundary condition. But the local 0 in Eqs.
(2-4) tends to increase the perturbation values for com-
pressions because, when M is smaller than the freestream
value, 1//3 is larger. Conversely, for expansions,
(1 +0 j r /K0)> l , and the required vn is larger than the
linearized values, but 1//3 is smaller than the freestream value.

Theoretical pressures predicted by the present method are
compared with exact theory and linearized theory for unswept
ramps (Fig. 3) and 45-deg swept ramps (Fig. 4). The modified

EXACT THEORY (KOPAL)

Fig. 6 20-deg cone drag.

linear theory shows greatly improved correlation with exact
theory relative to ordinary linear theory for both expansions
and compressions. Also, where the linear theory predicts
infinite perturbations at sonic edge conditions for the swept
ramp in Fig. 4 (M0=V2), the modified theory on the ex-
pansion side shows no tendency toward infinity. Use of the
local ft eliminates expansion singularities because 1/0 ap-
proaches zero with finite positive perturbations. On the
compression side, the exact and modified theories cannot be
computed at M0 =V2 for this two-dimensional case because
the flow could not actually remain two-dimensional.
However, it can be seen that the modified theory will not
predict infinite perturbations here either, because as
0JT/K0——1, exact boundary conditions cause vn and the
source strength to approach zero. Thus, an equilibrium must
be reached with the value of<t>x/V0 between 0 and - 1.0.

Numerical Results and Compararisons
Wings

The first application of the modified linear theory method
was to the calculation of thickness drag for planar surfaces
(wings and tails). Only the exposed panels are considered, and
when the wing or .tail butts up against the fuselage a reflection
plane is assumed at the wing/body intersection.

Figure 5 shows the dramatic improvement in correlation of
prediction with flight-test wave drag on the F-8C when the
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Fig. 7 20-deg cone pressures.
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Fig. 10 Cone-cylinder pressures.
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Fig. 9 Conical boattail velocities.

wing and tail wave drags from area rule are replaced by the
modified linear theory values. The elimination of the sonic
edge drag peak, which tests show does not exist, and the
prediction of higher drag than area rule when the leading edge
is supersonic are typical of many cases computed by the
modified linear theory. The F-8C, with its low-drag canopy
and shrouded engine exhaust, has low slopes everywhere
except on the wing and tails, and therefore its drag is
predicted well once the wing and tail drags are corrected.
However, many current configurations have high-visibility
canopies, high afterbody slopes, and other components where
accurate (nonlinear) calculation of three-dimensional effects
is required.

The sonic edge peak drag predicted by area rule is much less
of a problem for thinner airfoils or very highly swept wings.
But area rule calculations for a 45-deg swept, //c = 0.05
biconvex airfoil case still exhibit a false drag peak (15% high).

Cones
In Fig. 6, experimental data1 for drag of a 20-deg

semivertex angle cone are compared with several theoretical
predictions. The exact theory of Kopal agrees with experiment
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——— MODIFIED LINEAR THEORY

2 3
K. CALIBERS FROM NOSE

Fig. 11 Ogive-cylinder pressures.

when the flow is supersonic. When the local flow becomes
subsonic, the test values of drag level off and finally decrease
as the freestream Mach number decreases, but the exact
theory values continue to increase. This discrepancy arises
because the exact theory assumes conical flow, which is not
attained when the local flow becomes subsonic. The area rule
predictions agree well with test within the Mach range from
1.2 to 1.9. Below 1.2, where the local flow is subsonic, the
area rule prediction continues to increase, and above 1.9,
where the Mach angle is approaching tangency to the local
slope, the area rule prediction diverges from the data.. Linear
theory predictions for this case are poorer than the area rule
values. Van Dyke's second-order theory overpredicts the drag
somewhat. Van Dyke's method will not provide a solution
when the local flow becomes subsonic or when /3 times the
local slope is greater than unity.

From Fig. 6, it was seen that the correct (experimental)
values of cone pressures or drag were the exact theory values
when the local flow is supersonic, with a leveling or falling off
as the Mach number is reduced below that for local Mach
(ML) = 1.0. In Fig. 7 for a 20-deg cone and Fig. 8 for a 10-
deg cone, the modified linear theory predictions agree very
well with the desired values.

General Axisymmetric Bodies
The present method is compared with the method of

characteristics and Van Dyke's first- and second-order
solutions in Figs. 9-12 for four bodies which Van Dyke used
as examples.2'3 The modified linear theory predictions agree
much better with the characteristics solution than does the
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Fig. 12 Circular arc boattail velocities.
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Fig. 13 Fineness ratio 12 circular arc body, M= 1.5 (MOC = method
of characteristics).

Fig. 14 Fineness ratio 12 circular arc body, A/=3.0 (MOC— method
of characteristics).

linear solution. Compared to the Van Dyke second-order
solution, the modified linear results are not quite as accurate
in Figs. 9 and 10 and are equal to or better than in Figs. 11 and
12.

In Figs. 13-19, predictions by the method of charac-
teristics,4 Van Dyke, and modified linear theory are com-
pared for circular arc bodies of revolution at three values of
fineness ratio. The modified linear theory values generally
agree well with the characteristics solutions, except that the
maximum expansion pressures are overpredicted by about
10%. For the higher fineness ratios (8 and 12) in Figs. 13-16,
the Van Dyke second-order results agree very well with the
exact solution, but for fineness ratio 4 in Figs. 17-19, the Van
Dyke results are not as good as the modified linear theory,
particularly on the forebody, and at Mach 3 no solution is
possible with the Van Dyke method because the product of
freestream 0 and local slope is greater than unity. The present
method achieves a solution because local & times local slope is
less than unity.

In summary, for the circular arc bodies of revolution, the
modified linear theory is not as accurate as Van Dyke's

Fig. 15 Fineness ratio 8
circular arc body, M = 1.5.
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Fig. 17 Fineness ratio 4
circular arc body, A/= 1.7.
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Fig. 18 Fineness ratio 4
circular arc body, M= 2.0.

second-order method for slender bodies but is more accurate
and/or provides a solution where the Van Dyke method fails
for blunter bodies. Also, a large part of the inaccuracy for
slender bodies is due to a computational technique (as op-
posed to the basic modified theory method) which will be
discussed further under computational aspects.

Computational Aspects
Beta Correlation

The correlated relationship for /3 was empirically deter-
mined to give exact agreement between the modified linear
theory predictions and the exact isentropic solution for two-
dimensional ramps with local supersonic flow. Test data on
cones was used to establish the variation of & when the local
flow is subsonic. The maximum value of 1//3 is limited to
about 2.5, which corresponds to a Mach number of 1.08. For
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Fig. 19 Fineness ratio 4
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several freestream Mach numbers, the correlated and exact
1/13 functions are compared in Fig. 20.

Characteristics Tracing vs See-Through
A typical plot of the integrand in Eq. (2) is shown in Fig.

21. The singularity at x* is first order (i.e., of the form I/A:)
and thus produces an infinite result for integration from one
side to the singularity, but the integrand is equal and opposite
at Xj = x* + e and x}.=x* - e. Therefore, the result of the total
integration is finite if the source strength is continuous. But, if
the body has a. slope discontinuity, the source strength is
discontinuous, and at a point located behind the corner such
that x* is equal to the x of the corner, the perturbation
velocities are theoretically infinite.

This is a rather absurd result to get an infinite perturbation
from an area which actually cannot influence the point under
consideration at all. If characteristic tracing is performed, the
point at Xj =x* and 6 = IT will be outside of the influencing
region. If the 6 integration is taken to the characteristic line,
the integrand is finite everywhere.

The usual linear theory (or see-through) integration
boundaries are compared with the actual characteristic
boundaries in Fig. 22. For point A, the difference in the in-
fluencing region is not great, but use of the characteristic
boundaries does avoid the singularity problem discussed
previously. At point B, the see-through method is obviously
unusable with surface sources because the Mach forecone

Fig. 22 Alternate in-
fluencing regions.

Fig. 23 See-through
v a r i a t i o n , F R = 1 2
circular arc body,
A/=1.5.
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does not include the surface anywhere near point B. This
condition occurs when p(dr/dx) < - 1, and while extreme, it
does occur on the fineness ratio 4 body at Mach 2.0 and 3.0
(Figs. 18 and 19), where the characteristic tracing method
gave good results. All calculations shown so far have utilized
the characteristic tracing method, with an x stretching as
required to keep the hyperbolic radius positive.

Use of the characteristic tracing method is the cause of the
slight overprediction of expansion pressures mentioned
previously, as shown by the improved correlation in Fig. 23
for the afterbody of the fineness ratio 12 body at Mach 1.5
with see-through relative to the previous result in Fig. 13.
However, for nose cones, the see-through method un-
derpredicts,>as shown in Fig. 24. This difference is as large as
the expansion overprediction of the characteristic tracing
method and becomes a larger percentage as the cone angle is
increased. It is concluded that, except for smooth, quite
slender bodies, the characteristic tracing method is superior to
the see-through because of 1) the elimination of the infinite
perturbation from a slope discontinuity, 2) the capability to
calculate accurately when P(dr/dx) < -1, and 3) the
numerical accuracy on moderate- and high-angle cones. These
benefits outweigh the overprediction of maximum expansion
pressures which occurred on the circular arc bodies.

Continuing Development
An effort is currently underway to program the modified

linear theory method for complete aircraft configuration
calculations. It is expected that this program will provide a
capability for much more accurate and reliable supersonic
drag prediction than is> the case for current techniques. In
particular, prediction of incremental effects, which are im-
portant in preliminary design analyses and tradeoff studies,
will be much more reliable. The method does not "blow up"
when the Mach angle approaches or exceeds tangency to the
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local slope. When the local flow becomes subsonic, it does not
blow up, and if subsonic flow only happens at the nose of a
body, the results are probably accurate; in any event, the local
Mach number can be printed and examined by the engineer to
assess validity of results.

Conclusions
Two simple modifications to supersonic linear theory result

in significantly improved local pressure and drag predictions
for both planar and axisymmetric cases. The modified linear
theory appears comparable in accuracy to Van Dyke's second-
order theory. The modified linear theory method eliminates
or greatly relieves limitations of the area rule and ordinary
linear theory associated with infinite perturbation velocities,
"sonic edge" conditions, the small-perturbation assumption,

sensitivity of drags to cutting plane location, and lack of local
pressures for insight.
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